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Abstract: - Numerical solutions are obtained for the Temperature-Dependent Viscosity Effects on MHD free 
convection flow of a dissipative fluid over a vertical moving cylinder with time-dependent axial velocity,the 
surface of which is exposed to a constant wall temperatures. Numerical solutions of the Navier–Stokes 
equations, concentration equation and energy equation are derived in this problem. A reduction of these 
equations is obtained by use of appropriate transformations. The semi-similar solution of the Navier-Stokes 
equations, concentration equation and energy equation has been obtained numerically using by the implicit 
finite difference scheme of Crank–Nicolson’s type. The velocity, concentration and temperature profiles for 
different values of cylinder axial velocity are plotted.The influence of the thermal Grashof number, mass 
Grashof number, Schmidt number, Prandtl number, viscosity-variation parameter and magnetic parameter for 
different values of cylinder axial velocity on free convection flow and heat transfer are discussed. It is observed 
that, when Prandtl number increases the velocity and temperature decrease in the boundary layer. Also, it is 
found that as increase in the magnetic parameter leads to decrease in the velocity feld and rise in the thermal 
boundary thickness. 
Key-Words: Time-Dependent Axial Velocity, Moving Cylinder, Temperature-Dependent Viscosity, Dissipative 
Fluid, MHD Free Convection  
 
1 Introduction 

A study of the flow of electrically conducting 
fluid in presence of magnetic field is important from 
the technical point of view and such types of 
problems have received much attention by many 
researchers.Natural convection flow of a dissipative 
fluid over a vertical moving cylinder with time-
dependent axial velocity and temperature–dependent 
viscosity under the influence of a uniform transverse 
magnetic field is an important problem relevant to 
many engineering applications. In the glass and 
polymer industries, hot filaments, which are 
considered as vertical cylinders, are cooled as they 
pass through the surrounding environment. Free 
convection flows are of great interest in a number of 
industrial applications such as fiber and granular 
insulation, geothermal systems etc. Buoyancy is also 
of importance in an environment where differences 
between land and air temperatures can give rise to 
complicated flow patterns. Magnetohydrodynamic 
has attracted the attention of a large number of 
scholars due to its diverse applications. In 
astrophysics and geophysics, it is applied to study 
the stellar and solar structures, interstellar matter, 
radio propagation through the ionosphere etc. In 

engineering it finds its application in MHD pumps, 
MHD bearings etc. Convection in porous media has 
applications in geothermal energy recovery, oil 
extraction, thermal energy storage and flow through 
filtering devices.The phenomena of mass transfer is 
also very common in theory of stellar structure and 
observable effects are detectable, at least on the 
solar surface. The study of effects of magnetic field 
on free convection flow is important in liquid-
metals, electrolytes and ionized gases. The thermal 
physics of hydromagnetic problems with mass 
transfer is of interest in power engineering and 
metallurgy. 

Sparrow and Gregg [1] first studied the heat 
transfer from vertical cylinder. Goldstein and Briggs 
[2] presented an analysis of the transient free 
convective flow past vertical flat plate and circular 
cylinder to a surrounding initially quiescent fluid by 
employing Laplace transform technique. Nagendra 
et al. [3] presented a boundary layer analysis of free 
convection heat transfer from a vertical cylinder 
with uniform heat flux at its surface.An 
experimental and analytical study is reported by 
Evas et al. [4] for transient natural convection in a 
vertical cylinder. Velusamy and Grag [5], given a 
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numerical solution for the transient natural 
convection over a heat generating vertical cylinder. 
The study of flow problems, which involve the 
interaction of several phenomena, has a wide range 
of applications in the field of science and 
technology. One such study is related to the effects 
of MHD free convection flow, which plays an 
important role in geophysics, astrophysics and 
petroleum industries. Michiyoshi et al. [6] 
considered natural convection heat transfer from a 
horizontal cylinder to mercury under a magnetic 
field. Magnetic field effect on a moving vertical 
cylinder with constant heat flux was given by 
Ganesan and Loganathan [7]. Free convection flow 
involving coupled heat and mass transfer occurs 
frequently in nature. It occures not only due to 
temperature differences, but also due to 
concentration differences or a combination of these 
two, for example, in atmospheric flows there exist 
differences in the H20 concentration. A few 
representative fields of interest in which combined 
heat and mass transfer plays an important role are 
designing of chemical processing equipment, 
formation and dispersion of fog, distribution of 
temperature and moisture over agricultural fields 
and groves of fruit trees, crop damage due to 
freezing, and environmental pollution.The effects of 
heat and mass transfer on natural convection flow 
over a vertical cylinder was studied by Chen and 
Yuh [8]. Combined heat and mass transfer effects 
on moving vertical cylinder for steady and unsteady 
flows were analyzed by Takhar et al. [9] and 
Ganesan and Loganathan [10] respectively. Gebhart 
& Pera [11] analysed the steady combined buoyancy 
effects of thermal and mass diffusion on vertical 
natural convection flows. Bottemanne [12] studied 
the combined effect of heat and mass transfer in the 
steady laminar boundary layer of a vertical cylinder 
placed in still air. Elgazery and Hassan [13] 
presented a numerical study of radiation effect on 
MHD transient mixed convection flow over a 
moving vertical cylinder with constant heat flux 
through a porous medium. Reddy and Reddy [14, 
15]  presented  a  numerical  study  of  the  
interaction  of  radiation  and  mass  transfer  effects  
on  unsteady MHD  free convection flow past a 
semi-infinite moving vertical cylinder by employing 
finite-difference scheme of Crank-Nicolson  type. 
Recently R. K. Deka and A.Paul [16] studied the 
unsteady free convection flow past a moving 
vertical cylinder with constant temperature by 
employing Laplace transform technique. A 
numerical solution for the transient natural 
convection flow over a vertical cylinder under the 
combined buoyancy effect of heat and mass transfer 

was given by Ganesan and Rani [17], by employing 
an implicit fnite-difference scheme. Shanker and 
Kishan [18] presented the effect of mass transfer on 
the MHD flow past an impulsively started infinite 
vertical plate. Ganesan and Rani [19] studied the 
MHD unsteady free convection flow past a vertical 
cylinder with heat and mass transfer. In the context 
of space technology and in processes involving high 
temperatures, the effects of radiation are of vital 
importance. On assuming that the viscosity of the 
fluid is linear functions of temperature, a semi-
empirical formula was proposed by Charraudeau 
[20] which is appropriate for small  

Prandtl number Studies of free convection flow 
along a vertical cylinder or horizontal cylinder are 
important in the field of geothermal power 
generation and drilling operations where the free 
stream and buoyancy induced fluid velocities are of 
roughly the same order of magnitude. Many 
researchers such as Arpaci [21], Cess [22], Cheng 
and Ozisik [23], Raptis [24], Hossain and Takhar 
[25, 26] have investigated the interaction of thermal 
radiation and free convection for different 
geometries, by considering the flow to be steady. 
The unsteady flow past a moving vertical plate in 
the presence of free convection and radiation were 
studied by Das et al. [27]. Radiation and mass 
transfer effects on two-dimensional flow past an 
impulsively started isothermal vertical plate were 
studied by Ramachandra Prasad et al. [28]. The 
combined radiation and free convection flow over a 
vertical cylinder was studied by Yih [29]. Radiation 
and mass transfer effects on flow of an 
incompressible viscous fluid past a moving vertical 
cylinder was studied by Ganesan and Loganathan 
[30]. MHD natural convection flow from an 
isothermal horizontal circular cylinder under 
consideration of temperature dependent viscosity 
were studied by Molla et al. [31]   

The object of the present paper is to study the 
free convection flow of a dissipative fluid on a 
vertical moving cylinder with time-dependent axial 
velocity and temperature–dependent viscosity, 
under the influence of a uniform transverse 
magnetic field in the presence of constant wall 
temperatures.The dimensionless governing 
equations are solved by using an implicit finite 
difference scheme of Crank–Nicolson’s type. 
 
2 Problem Formulation 

Consider the free convection flow of a dissipative 
fluid on a vertical moving cylinder with time-
dependent axial velocity and temperature–dependent 
viscosity in constant wall temperatures (Fig. 1) 

WSEAS TRANSACTIONS on MATHEMATICS Rasool Alizadeh, Komeil Rahmdel

E-ISSN: 2224-2880 272 Volume 14, 2015



under the action of a transverse magnetic field. 
Under these assumptions and Boussinesq’s 
approximation, the flow is governed by the 
following system of equations: 

 

Fig 1. Sketch of the physical model 
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)1(
( ) ( ) 0ru rv

z r
∂ ∂

+ =
∂ ∂

                                                

Momentum equation: 

2

2

1u u u u uu v
t z r r r r

υ
 ∂ ∂ ∂ ∂ ∂

+ + = + ∂ ∂ ∂ ∂ ∂ 
             

        ( ) ( )
2

* 0Bg c c g T T uσβ β
ρ∞ ∞+ − + − −       (2) 

Energy equation: 

2

2

1T T T T Tu v
t z r r r r

α
 ∂ ∂ ∂ ∂ ∂

+ + = + ∂ ∂ ∂ ∂ ∂  

22
20

P P

B uu
C C r

σ µ
ρ ρ

∂ + +  ∂ 
                        (3)            

 

Mass equation: 
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where u and v are components of the velocity in z 
and r directions, respectively, t is the  time, υ  is the 

kinematic viscosity , β  is the volumetric coefficient 
of thermal expansion, *β  is the volumetric 
expansion coefficient for mass transfer, g is the 
acceleration due to gravity, ρ  is the density , σ  
fluid electrical conductivity, 0B is magnetic 
induction, α  is fluid thermal diffusivity, pc is 
specific heat at constant pressure, T  is the 
temperature, T∞ is the temperature of the fluid far 
away from the cylinder, C  is the concentration, 
C∞ is the concentration far away from the cylinder 
and D is the molecular diffusivity.  

The necessary initial and boundary conditions are:  

0t ≤  : 0u = , 0v = , T T∞= , c c∞=  

0t 〉  : 0u = , 0v = , T T∞= , c c∞=  at 0z =     (5) 
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Out of the many forms of viscosity variation, which 
are available in the literature, we will consider only 
following form proposed by Charraudeau [20] 

( )*1 T Tµ µ γ∞ ∞ = + −                                      
(6) 

whereµ∞  is the viscosity of the ambient fluid and 
*γ is defined as follows 
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Here f  denotes the film temperature of the fluid. 

 Now introduce the following non dimensional 
quantities: 
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where a is cylinder radius, Z is the dimensionless 
axial coordinate, r is the dimensionless radial 
coordinate perpendicular to Z , ,U V is the 
dimensionless velocities, τ  is the dimensionless 
time, θ  is the dimensionless temperature, C  is the 
non-dimensional species concentration, wT  is the 
temperature at the surface, υ∞  is the reference 
kinematic viscosity, Sc is the Schmidt number, Gc is 
the mass Grashof number, Gr is the thermal Grashof 
number, M is the magnetic parameter, Pr is the 
prandtl number, γ  is the viscosity variation 
parameter and Br  is the Brinkman number. 

Continuity equation: 
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The dimensionless boundary conditions become: 

0τ ≤  : 0U = , 0V = , 0θ = , 0C =  

0τ 〉  : 0U = , 0V = , 0θ = , 0C =  at 0Z =  (13) 

0τ 〉 : 0. ( )U u U τ= , 0V = , 1θ = , 1C =  at 1R =  

0τ 〉  : 0U = , 0θ = , 0C =              at      R →∞  

3. NUMERICAL SOLUTION OF THE 
PROBLEM 

The governing equations (9-11) are steady, coupled 
and non-linear with boundary conditions. An 
implicit finite-difference technique of Crank–
Nicolson has been employed to solve the nonlinear 
coupled equations, as described (Thomas algorithm) 
in Carnahan et al [33].The finite difference 
equations corresponding to equations (7–10) are as 
follows: 
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The region of integration is considered as a 
rectangle with sides ( )max 1Z = and ( )max 10R = , 

where corresponding to R →∞  which lies far from 
the momentum, energy and concentration boundary 
layers. An appropriate mesh sizes considered for the 
calculation are 0.01Z∆ = , 0.05R∆ =  and 

0.005τ∆ = . 

4. RESULTS AND DISCUSSION 

The velocity, temperature and concentration profiles 
have been computed by using implicit finite 
difference scheme of Crank–Nicolson’s type. The 
numerical calculations are carried out for the effect 
of the flow parameters such as time-dependent axial  
velocity ( )U τ , Prandtl number (Pr), Schmidth 
number (Sc), thermal Grashof number (Gr), mass 
Grashof number (Gc), viscosity-variation parameter 
(γ ), magnetic parameter (M) and Brinkman number 
( Br ) on the velocity, temperature and concentration 
distribution of the flow fields are presented 
graphically in figure 2-14. 

The effects of Grashof number (Gr) on the velocity 
and temperature profiles for 0γ =  and time-
dependent axial velocity of cylinder 

( ) exp( )U τ τ= −  are shown in Figs. 2-3. It is 
observed that the velocity and temperature increases 
with increase in Grashof number.  
Fig 4 display the influence of mass Grashof 
number(Gc) on the transient velocity profiles 
for 0γ =  and time-dependent axial velocity of 
cylinder ( ) exp( )U τ τ= −  . It is clear that increasing 
the mass Grashof number tends to increases the 
velocity.The hydrodynamics boundary layer become 
thick as the mass Grashof number increases. 

Figs 5-6 illustrates the dimensionless velocity and 
temperature profiles for 0γ =   and time-dependent 
axial velocity of cylinder ( ) exp( )U τ τ= −  and for 
magnetic parameter (M). It is obvious that, the 
velocity and temperature decreases with increases in 
magnetic parameter. The presence of the transverse 
magnetic field produces a resistive force the fluid 
flow. This force is called the Lorentz force, which 
leads to slow down the motion of electrically 
conducting fluid, which tends to increase the 
temperature.  
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Figure 2. Effect of Grashof number (Gr) on dimensionless velocity 
Profiles for 0γ =   and time-dependent axial velocity of cylinder 

( ) exp( )U τ τ= −   

R

θ

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

U(τ)=exp(-τ)

Gc=2.0

M=1.0

Br=1.0

Pr=1.0

Sc=0.6

Gr=5
Gr=10
Gr=15
Gr=20
Gr=25

 

Figure 3. Effect of Grashof number (Gr) on dimensionless temperature 
Profiles for 0γ =   and  time-dependent axial velocity of cylinder 

( ) exp( )U τ τ= −  

Figs. 7-8 depicts the velocity and temperature 
profiles for 0γ =   and time-dependent axial 
velocity of cylinder ( ) exp( )U τ τ= −  and for 
different values of Prandtl number (Pr). It is 
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observed that the velocity and temperature decreases 
with increase in the Prandtl number. 

The influence of Schmidth number (Sc) on the 
velocity and concentration profiles for 0γ =   and 
time-dependent axial velocity of cylinder 

( ) exp( )U τ τ= −  are shown in Figs. 9-10. It is 
observed that the concentration and velocity 
decreases with increase in Schmidth number.  

The effects of different values time-dependent axial 
velocity of cylinder ( )U τ  on the velocity and 
temperature profiles are shown in Figs. 11-12.  

Figs. 13-14 depicts the velocity and temperature 
profiles for time-dependent axial velocity of 
cylinder ( ) exp( )U τ τ= −  and for different values 
of viscosity-variation parameter (γ ). It is observed 
that the velocity and temperature increases with 
increase in the viscosity-variation parameter (γ ). 

Figs 15-16 illustrates the dimensionless velocity and 
temperature profiles for 1.0γ =   and time-
dependent axial velocity of cylinder 

( ) exp( )U τ τ= −  and for different values of 
Brinkman number ( Br ). It is obvious that, the 
velocity and temperature increases with increases in 
Brinkman number. 
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Figure 4. Effect of mass Grashof number (Gc) on dimensionless 
velocity Profiles for 0γ =   and  time-dependent axial velocity of 

cylinder ( ) exp( )U τ τ= −  
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Figure 5. Effect of magnetic parameter (M) on dimensionless velocity 
Profiles for 0γ =   and  time-dependent axial velocity of cylinder 

( ) exp( )U τ τ= −  
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Figure 6. Effect of magnetic parameter (M) on dimensionless 
temperature Profiles for 0γ =   and  time-dependent axial velocity of 

cylinder ( ) exp( )U τ τ= −  
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Figure 7. Effect of Prandtl number on dimensionless velocity Profiles 
for  0γ =   and  time-dependent axial velocity of cylinder 

( ) exp( )U τ τ= −  
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Figure 8. Effect of Prandtl number on dimensionless temperature 
Profiles for 0γ =   and  time-dependent axial velocity of cylinder 

( ) exp( )U τ τ= −  

R

U

1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4
0

0.25

0.5

0.75

1

1.25

U(τ)=exp(-τ)

Gr=10

Gc=2.0 

M=1.0 

Br=1.0 
Pr=1.0 

Sc=0.1
Sc=0.4
Sc=0.7
Sc=1.0

 

Figure 9. Effect of Schmidth number (Sc)  on dimensionless velocity 
Profiles for 0γ =   and  time-dependent axial velocity of cylinder 

( ) exp( )U τ τ= −  
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Figure 10. Effect of Schmidth number (Sc) on dimensionless 
concentration Profiles for 0γ =   and  time-dependent axial velocity 

of cylinder ( ) exp( )U τ τ= −  

R

U

1 1.3 1.6 1.9 2.2 2.5 2.8 3.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Gr=10

Gc=2.0 

M=1.0 

Br=1.0 

Pr=1.0 

Sc=0.6

U(τ)=1
U(τ)=τ
U(τ)=1+τ
U(τ)=1-τ
U(τ)=τ0.5

U(τ)=τ2

 

Figure 11. Effect of different values time-dependent axial velocity of 

cylinder ( )U τ   on dimensionless velocity Profiles for 0γ =   
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Figure 12. Effect of different values time-dependent axial velocity of 

cylinder ( )U τ   on dimensionless temperature  Profiles for 0γ =  
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Figure 13. Effect of viscosity-variation parameter (γ ) on 
dimensionless velocity Profiles for time-dependent axial velocity of 

cylinder ( ) exp( )U τ τ= −  
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Figure 14. Effect of viscosity-variation parameter (γ ) on 
dimensionless temperature Profiles for time-dependent axial velocity of 

cylinder ( ) exp( )U τ τ= −  
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Figure 15. Effect of Brinkman number ( Br ) on dimensionless 
velocity Profiles for time-dependent axial velocity of cylinder 

( ) exp( )U τ τ= −  
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Figure 16. Effect of Brinkman number ( Br ) on dimensionless 
temperature Profiles for time-dependent axial velocity of cylinder 

( ) exp( )U τ τ= −  

5. CONCLUSIONS 

A numerical study has been carried out to study the 
MHD free convection flow of a dissipative fluid on 
a vertical moving cylinder with time-dependent 
axial velocity and temperature–dependent viscosity, 
in the presence of constant wall temperatures. The 
semi-similar solution of the Navier-Stokes 
equations, concentration equation and energy 
equation has been obtained numerically using by the 
implicit finite difference scheme of Crank–
Nicolson’s type. From the present numerical 
investigation, following conclusions have been 
drawn: 

1- Velocity increases, temperature decreases 
with an increase in Grashof number (Gr). 

2- Velocity and temperature decreases with an 
increase in magnetic parameter (M). 

3- Increase in mass Grashof number (Gc), 
velocity increases. 

4- Velocity and temperature decreases with an 
increase in Grashof number (Gr) . 

5- Velocity and concentration decreases with 
an increase in Schmidth number (Sc). 

6- Velocity and temperature increases with an 
increase in viscosity-variation parameter 
(γ ). 

7- Velocity and temperature increases with an 
increase in Brinkman number ( Br ). 
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